Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7998): 341-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297117

RESUMO

The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.


Assuntos
Migração Humana , Animais , Humanos , Restos Mortais/metabolismo , DNA Antigo/análise , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Europa (Continente) , Extinção Biológica , Fósseis , Alemanha , História Antiga , Homem de Neandertal/classificação , Homem de Neandertal/genética , Homem de Neandertal/metabolismo , Proteômica , Datação Radiométrica , Migração Humana/história , Fatores de Tempo
2.
Biotechniques ; 75(2): 42-46, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37589132

RESUMO

Elena Essel (Msc) spoke to Ebony Torrington, Managing Editor of BioTechniques. Essel is a molecular biologist in Matthias Meyer's Advanced DNA Sequencing Techniques group at the Max Planck Institute for Evolutionary Anthropology in Leipzig (Germany). Essel studied biology at University of Erlangen-Nuremberg (Erlangen, Germany) for her bachelor's and in Martin-Luther-University Halle-Wittenberg (Halle an der Saale, Germany) for her master's. Essel worked in Meyer's group on DNA extraction of very degraded material for her master's thesis. Meyer is an expert in developing new cutting-edge methods for researching ancient DNA, with a focus on skeletal remains, and more recently on sediment remains. Essel now focusses on DNA sampling and extraction aspects of the pipeline at Meyer's lab for the ancient DNA workflow.


Assuntos
Antropologia , DNA Antigo , Humanos , Feminino , Restos Mortais , Análise de Sequência de DNA , Universidades
3.
Nature ; 618(7964): 328-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138083

RESUMO

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Assuntos
Osso e Ossos , DNA Antigo , Dente , Animais , Feminino , Humanos , Arqueologia/métodos , Osso e Ossos/química , Cervos/genética , DNA Antigo/análise , DNA Antigo/isolamento & purificação , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , História Antiga , Sibéria , Dente/química , Cavernas , Federação Russa
4.
Nature ; 610(7932): 519-525, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261548

RESUMO

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Assuntos
Homem de Neandertal , Animais , Feminino , Humanos , Cavernas , Genoma/genética , Hibridização Genética , Homem de Neandertal/genética , Sibéria , DNA Mitocondrial/genética , Cromossomo Y/genética , Masculino , Família , Homozigoto
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969841

RESUMO

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Assuntos
Cavernas , DNA Antigo , Fósseis , Hominidae/genética , Homem de Neandertal/genética , Animais
6.
Nature ; 595(7867): 399-403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163072

RESUMO

Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1-4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8-11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly-possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.


Assuntos
Cavernas , DNA Antigo/análise , Sedimentos Geológicos/química , Hominidae/genética , Animais , Arqueologia , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Fósseis , História Antiga , Homem de Neandertal/genética , Sibéria
7.
Biotechniques ; 71(1): 382-386, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34164993

RESUMO

Contamination with microbial and other exogenous DNA poses a significant challenge in the generation of genome-wide sequence data from ancient skeletal remains. Here we describe a method for separating ancient DNA into multiple fractions during DNA extraction by sequential temperature-controlled release of DNA into sodium phosphate buffer. An evaluation of the effectiveness of the method using a set of three ancient bones resulted in between 1.6- and 32-fold enrichment of endogenous DNA compared with regular DNA extraction. For two bones, the method outperformed previous methods of decontaminating ancient bones, including hypochlorite treatment, which resulted in near-complete destruction of DNA in the worst-preserved sample. This extraction method expands the spectrum of methods available for depleting contaminant DNA from ancient skeletal remains.


Assuntos
Restos Mortais , Osso e Ossos , DNA Antigo , DNA Antigo/isolamento & purificação , Humanos , Temperatura
8.
Nature ; 592(7853): 253-257, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828320

RESUMO

Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.


Assuntos
DNA Antigo/análise , Genoma Humano/genética , Homem de Neandertal/genética , Alelos , América/etnologia , Animais , Arqueologia , Bulgária/etnologia , Cavernas , Ásia Oriental/etnologia , Feminino , História Antiga , Humanos , Masculino , Filogenia
9.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858989

RESUMO

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Animais , Cavernas/química , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , Sedimentos Geológicos/química , Filogenia , População/genética , Análise de Sequência de DNA , Sibéria , Espanha
10.
PLoS One ; 15(12): e0244824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382830

RESUMO

SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast screening method based on direct RT-qPCR to detect SARS-CoV-2 in single or pooled gargle lavages ("mouthwashes"). This method detects individuals with large viral loads (Ct≤29) and we use it to test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches can be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , Programas de Rastreamento , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos
11.
Science ; 369(6511): 1653-1656, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973032

RESUMO

Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.


Assuntos
Evolução Molecular , Traços de História de Vida , Homem de Neandertal/genética , Cromossomo Y/genética , Animais , Cromossomos Humanos Y/genética , DNA Antigo , DNA Mitocondrial/genética , Humanos , Masculino , Homem de Neandertal/classificação , Filogenia
12.
Proc Natl Acad Sci U S A ; 116(31): 15610-15615, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308224

RESUMO

The Forbes' Quarry and Devil's Tower partial crania from Gibraltar are among the first Neanderthal remains ever found. Here, we show that small amounts of ancient DNA are preserved in the petrous bones of the 2 individuals despite unfavorable climatic conditions. However, the endogenous Neanderthal DNA is present among an overwhelming excess of recent human DNA. Using improved DNA library construction methods that enrich for DNA fragments carrying deaminated cytosine residues, we were able to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the Forbes' Quarry and Devil's Tower specimens, respectively, as well as large parts of the mitochondrial genome of the Forbes' Quarry individual. We confirm that the Forbes' Quarry individual was a female and the Devil's Tower individual a male. We also show that the Forbes' Quarry individual is genetically more similar to the ∼120,000-y-old Neanderthals from Scladina Cave in Belgium (Scladina I-4A) and Hohlenstein-Stadel Cave in Germany, as well as to a ∼60,000- to 70,000-y-old Neanderthal from Russia (Mezmaiskaya 1), than to a ∼49,000-y-old Neanderthal from El Sidrón (El Sidrón 1253) in northern Spain and other younger Neanderthals from Europe and western Asia. This suggests that the Forbes' Quarry fossil predates the latter Neanderthals. The preservation of archaic human DNA in the warm coastal climate of Gibraltar, close to the shores of Africa, raises hopes for the future recovery of archaic human DNA from regions in which climatic conditions are less than optimal for DNA preservation.


Assuntos
DNA Antigo , Homem de Neandertal/genética , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Gibraltar , História Antiga , Humanos
13.
Sci Adv ; 5(6): eaaw5873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249872

RESUMO

Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.


Assuntos
Núcleo Celular/genética , DNA/genética , Homem de Neandertal/genética , Animais , Linhagem da Célula/genética , Europa (Continente) , Evolução Molecular , Fósseis , Genoma/genética , Alemanha , Mitocôndrias/genética
14.
Science ; 356(6338): 605-608, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28450384

RESUMO

Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.


Assuntos
DNA Antigo/isolamento & purificação , DNA Mitocondrial/isolamento & purificação , Hominidae/classificação , Hominidae/genética , Animais , Cavernas , DNA Antigo/análise , DNA Mitocondrial/análise , Europa (Continente) , Fósseis , Sedimentos Geológicos/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...